Saturday, October 11, 2025
HomeProductsSQL Server ToolsSQL Server CAST Function With Examples for Data Type Conversion

SQL Server CAST Function With Examples for Data Type Conversion

One bad conversion—just one—can throw off financial reports, distort key calculations, and drag down query performance. However, most developers still blindly trust SQL Server’s implicit conversions without considering these risks. Behind the scenes, these silent conversions can compromise precision, truncate data, and create logic-breaking inconsistencies—turning reliable queries into ticking time bombs.  

To avoid these pitfalls, the CAST function in SQL can be your failsafe. Unlike implicit conversions that occur automatically based on SQL Server’s type precedence rules, CAST() offers precise control over data transformations. It allows you to explicitly define data types, ensuring accurate conversions—though precision and rounding outcomes depend on the chosen target type. 

This guide delves into the SQL CAST function, revealing its use cases, performance pitfalls, and conversion techniques. If you want to write SQL that’s bulletproof, efficient, and built for scale, start here!  

Table of contents 

What is CAST in SQL? 

The CAST function in SQL Server is a built-in function used for explicit data type conversion. It converts a value from one data type to another, overriding SQL Server’s automatic (implicit) conversions. This allows developers to ensure data consistency and avoid unintended behavior. 

CAST() is essential for operations where data type mismatches can lead to errors, incorrect results, or inconsistent formatting. For example, in finance, monetary values should be stored as DECIMAL rather than FLOAT to maintain precision and avoid rounding errors. 

Implicit vs. explicit casting in SQL Server  

The table below compares implicit vs. explicit SQL casting to better illustrate the differences. 

FeatureImplicit Casting Explicit Casting (CAST(), CONVERT()) 
Control Automatic – SQL Server decides based on type precedence Manual – the developer explicitly defines the conversion 
Precision Handling May introduce precision loss (e.g., INT to FLOAT rounding errors) Ensures precision based on the chosen data type 
Performance Impact Can cause index scans in WHERE clauses, slowing queries It helps maintain index efficiency and optimizes query performance 
Usage Scenarios Simple operations where conversion is predictable (e.g., INT + FLOAT) Critical data operations requiring accuracy (e.g., financial calculations, formatted output) 
Error Handling This may lead to unexpected results (e.g., INT division truncating decimals) Helps enforce conversion rules, reducing unexpected behavior 

How SQL Server handles mixed data types 

When SQL Server encounters different data types in an expression, it decides how to resolve them based on type precedence rules. This process can be implicit or explicit, depending on whether the developer specifies the conversion. 

Implicit vs. explicit casting process 

Conversion Type Example QueryWho Decides Conversion Conversion Rule Result 
Implicit Conversion SELECT 10 + 2.5 AS Result; SQL Server SQL Server applies type precedence (INT → FLOAT) FLOAT 12.5 
Explicit Conversion SELECT CAST(10 AS FLOAT) + 2.5 AS Result; Developer Developer forces type conversion (INT → FLOAT) FLOAT 12.5 

SQL Conversion in Action: Implicit vs. Explicit Casting 

To better understand implicit and explicit conversions, let’s create a test table with integer and floating-point values. 

CREATE TABLE TestConversions ( 
    IntValue INT, 
    FloatValue FLOAT 
); 
 
INSERT INTO TestConversions (IntValue, FloatValue)  
VALUES  
    (10, 2.5), 
    (100, 3); -- Simulating values used in the examples 

The following query examples illustrate where implicit conversions help or cause issues: 

Implicit conversion (works automatically). 

SELECT 10 + 2.5 AS Result; 

Output: 12.5  

 SQL Server automatically converts the INT value 10 into a FLOAT to accommodate the decimal value. This implicit conversion is working correctly and requires no manual intervention. 

Implicit conversion producing an unintended result. 

SELECT 100 / 3 AS Result; 

Output: 33 

 Problem: 

  • SQL Server implicitly treats 100 and 3 as integers, so it performs integer division, dropping the decimal instead of giving 33.33.
  • If you need decimal precision, implicit conversion fails you here. 

Explicit conversion using CAST() (fixing the Issue). 

SELECT CAST(100 AS FLOAT) / 3 AS FixedResult; 

Output: 33.3333 

  We explicitly convert 100 to FLOAT, ensuring correct decimal division instead of silent truncation. 

Now that you’ve seen how implicit and explicit conversions behave in practice, let’s break down the exact syntax of the CAST function. 

Syntax of the CAST function in SQL Server 

The CAST() function follows a standard syntax that specifies the value to be converted and the target data type. 

CAST(expression AS target_data_type [(length)]) 

Parameters explained 

Parameter Description 
expression The value you want to convert. 
target_data_type The desired data type to convert the expression into. 
length (optional) Critical for strings: Specifies the length for CHAR, VARCHAR, NCHAR, or NVARCHAR. If omitted, SQL Server assigns a default length (typically 30), which can cause silent truncation. 

Common gotchas with CAST() 

These pitfalls are easy to miss; avoid them to prevent errors and performance issues: 

  • Miscasting VARCHAR to INT: CAST(‘abc’ AS INT) fails with an error. Always validate data before conversion.
  • Omitting length on strings: CAST(‘Devart CAST Function’ AS VARCHAR) defaults to 30 characters and may truncate your string.
  • Using CAST in WHERE clauses: WHERE CAST(OrderDate AS VARCHAR) = ‘2025-01-01’ forces an index scan and kills performance. Always cast parameters, not columns. 

One area that trips up even experienced developers is the length parameter in string casts. Let’s look at why it matters. 

Impact of the length parameter in string CASTs 

When casting strings in SQL Server, the length parameter determines how many characters are preserved in the result. Overlooking this detail is one of the most common causes of silent data loss in production systems. 

Default behavior when length is omitted 

If you omit the length when casting to CHAR, VARCHAR, NCHAR, or NVARCHAR, SQL Server applies defaults that are often misunderstood. For example: 

  • CHAR / VARCHAR: Defaults to 30 characters.
  • NCHAR / NVARCHAR: Defaults to 30 characters. 

Caution: While developers assume the entire string will be preserved, SQL Server may truncate after 30 characters without warning. 

Truncation risks when casting to VARCHAR 

Casting to a shorter string type than required will cut off data, sometimes altering the meaning entirely. 

SELECT CAST('Devart CAST Function' AS VARCHAR(5)) AS ShortString; 
-- Output: Devar

 In this case, only the first five characters are kept, and the rest is lost. 

Example comparison of input and output lengths 

The following table shows how the exact input string behaves when cast with different lengths: 

Input string CAST as VARCHAR(6)CAST as VARCHAR(10)CAST as VARCHAR(50)
Devart CAST function Devart Devart CAS Devart CAST function 

Best practices for using length parameters 

Length defines both accuracy and performance. To keep queries efficient and data consistent, apply these rules: 

  • Always specify a length so you don’t rely on SQL Server defaults.
  • Match the length to business rules, such as using VARCHAR(2) for codes or VARCHAR(50) for names.
  • Avoid excessive length, because VARCHAR(MAX) degrades indexing and slows queries.
  • Validate output to ensure truncation never changes stored values. 

The behavior of CAST() in different scenarios 

ExampleQueryOutputKey takeaway 
Converting FLOAT to INT (truncation behavior) SELECT CAST(123.45 AS INT) AS ConvertedValue; 123 SQL Server truncates the decimal part instead of rounding. 
Rounding before Casting (avoiding truncation) SELECT CAST(ROUND(123.75, 0) AS INT) AS RoundedValue; 124 CAST() does not apply rounding when converting numeric values. If precision matters, use the ROUND() function before applying CAST(). 
Failed conversion (data type mismatch) SELECT CAST(‘Hello’ AS INT); Error: Msg 245: Conversion failed when converting the varchar value ‘Hello’ to data type int. Always validate data before casting to prevent errors. 
Handling NULL values (preserving NULLs) SELECT CAST(NULL AS INT) AS NullValue; NULL NULL remains NULL, not 0 or an empty string. 
Casting NULL to a string SELECT CAST(NULL AS VARCHAR(10)) AS NullString; NULL NULL remains NULL, not an empty string (”). 

Knowing CAST() behavior helps prevent inefficiencies. For even better efficiency, using a SQL Server IDE with performance optimization and advanced debugging tools can enhance your workflow. 

CASTing to DATETIME in SQL Server 

CAST() lets you explicitly convert strings into valid SQL Server date/time types, but it must be used with strict attention to format. Let’s take a closer look. 

Converting VARCHAR to DATETIME 

The most reliable way to cast text into a date/time is by using ISO-8601 format (YYYY-MM-DD or YYYY-MM-DDThh:mm:ss). SQL Server parses these consistently across environments. 

Example 

SELECT CAST('2025-03-15' AS DATETIME) AS CastDate; 
-- Output: 2025-03-15 00:00:00.000 

Pitfalls that cause conversion failures 

Casting to DATETIME is unforgiving with invalid or ambiguous formats. To avoid costly errors in production, watch out for: 

  • Invalid formats: CAST('15-03-2025' AS DATETIME) fails because the engine cannot determine day–month–year order.
  • Locale-dependent strings: 03/15/2025 works under U.S. English but fails under European settings where 15/03/2025 is expected.
  • Precision loss: Casting to SMALLDATETIME rounds seconds to the nearest minute, a silent change that can affect reporting accuracy. 

Choosing the correct date/time type for the job 

SQL Server provides several date and time data types, each designed for different precision and storage needs. Selecting the right one ensures efficient storage, accurate results, and queries that perform reliably. 

Data type Range Precision Storage Best used for 
DATETIME 1753–9999 3.33 ms 8 bytes Financial transactions, audit trails, and high-precision logs 
DATE 0001–9999 1 day 3 bytes Birthdates, schedules, static records 
SMALLDATETIME 1900–2079 1 minute 4 bytes Summaries, reports, logs where seconds don’t matter 

Best practices for safe and predictable conversions 

Follow these rules to ensure consistent and reliable results: 

  • Use ISO-8601: Always supply dates in YYYY-MM-DD or YYYY-MM-DDThh:mm:ss.
  • Validate inputs: Apply TRY_CAST or TRY_CONVERT to prevent runtime errors when handling external data.
  • Right-size the data type: Use DATE if you don’t need time, DATETIME for precision, and SMALLDATETIME when second-level accuracy doesn’t matter.
  • Avoid regional formats: Never rely on dd/MM/yyyy or MM/dd/yyyy. They introduce errors when code is moved across servers or regions. 

Casting to dates is only one piece of the puzzle. To really understand why CAST matters, you need to see how it compares to SQL Server’s implicit conversions. 

Why use CAST instead of implicit conversion? 

Here’s why explicit conversion with CAST() matters. 

Control over data conversion 

SQL Server sometimes converts values automatically, but this can lead to unexpected behavior and errors. Using CAST(), you ensure that data is explicitly converted, avoiding confusion and calculation issues. 

Implicit vs. explicit conversion flow 

To illustrate the importance of explicit conversion, let’s set up a test table with various data types. This will allow us to analyze how CAST() behaves in different scenarios. 

-- Create test table for CAST() conversion scenarios 
CREATE TABLE CastTest ( 
    ID INT IDENTITY(1,1) PRIMARY KEY, 
    StringValue VARCHAR(50),  -- Contains numeric and non-numeric strings 
    NumericValue INT,         -- Stores integer values 
    DateValue VARCHAR(20)     -- Stores dates as strings for conversion testing 
); 
 
-- Insert sample data for testing 
INSERT INTO CastTest (StringValue, NumericValue, DateValue)  
VALUES  
    ('123', 50, '2025-03-15'),    -- Valid numeric string 
    ('abc', NULL, 'invalid-date'), -- Invalid numeric string 
    (NULL, 200, NULL),             -- NULL case 
    ('300', 300, '2024-12-01');    -- Mixed valid data 

With this test table in place, let’s explore real-world examples of implicit vs. explicit conversions and why CAST() is essential. 

Here is an example of an unexpected string concatenation issue. 

SELECT 'Value: ' + 50; 

Output (Error): 

Msg 245, Level 16, State 1, Line 1   
Conversion failed when converting the varchar value 'Value: ' to data type int. 

Problem: SQL Server tries to convert the string ‘Value: ‘ into an integer instead of treating 50 as a string. 

Fix: Explicit conversion using CAST() 

SELECT 'Value: ' + CAST(50 AS VARCHAR); 

Output: 

Value: 50 

We explicitly tell SQL Server to convert 50 into a VARCHAR, ensuring correct concatenation. 

Ensuring data type compatibility 

Certain operations require explicit data conversion to avoid compatibility issues. 

Example: Converting VARCHAR to INT. 
SELECT CAST('456' AS INT) * 2; 

Output: 912 

If this implicit conversion were to fail due to bad data ('abc' instead of '456'), it would cause an error mid-query, disrupting execution. Using CAST(), you ensure only valid conversions occur, preventing unexpected failures. 

Portability and SQL standard compliance 

Unlike CONVERT(), which is SQL Server-specific, CAST() follows the ANSI SQL standard, ensuring compatibility across different database systems. 

Example: Writing a portable query for multiple databases. 

SELECT CAST('2025-03-15' AS DATE); 

This works in both SQL Server and PostgreSQL, making it easier to write cross-platform queries. If you use CONVERT(), your query may not work in other databases like MySQL or PostgreSQL. CAST() makes your SQL more future-proof and transferable. 

Impact on execution plans 

Implicit conversions don’t just risk errors; they also affect query performance. When SQL Server applies an implicit conversion inside a WHERE clause, it can block the use of indexes and force an expensive index scan. By casting parameters explicitly instead of columns, you preserve index seeks and keep queries efficient. 

For a detailed walkthrough, see Microsoft Docs on execution plans in SSMS

Casting wisely is not only about correctness, it’s about writing queries that scale. For additional strategies, see our SQL performance optimization guide.   

Practical examples of using CAST() in SQL Server 

Here are key use cases where CAST() improves data handling. 

IssueBad example (index scan) ProblemGood example (index-friendly) Fix
CAST() inside WHERE clauses forces SQL Server to scan every row, preventing index usage. SELECT * FROM Orders WHERE CAST(OrderDate AS VARCHAR) = ‘2024-01-01’; It forces the SQL Server to apply CAST() to every row, making indexed searches impossible. This results in slow, inefficient queries on large datasets. SELECT * FROM Orders WHERE OrderDate = CAST(‘2024-01-01’ AS DATE); Convert the parameter, not the column. This allows SQL Server to use indexes and optimize query performance efficiently. 
Handling CAST() errors with TRY_CAST() (Available from SQL Server 2012+)   SELECT CAST(‘invalid_number’ AS INT); If the conversion fails, the SQL Server throws an error, stopping execution. This can disrupt workflows, especially in production environments. SELECT TRY_CAST(‘invalid_number’ AS INT) AS SafeCast; TRY_CAST() (SQL Server 2012+) returns NULL instead of failing, allowing queries to continue without crashing. This is useful for handling dirty or unpredictable data. 

Want to master more SQL Server techniques? This SQL Server tutorial covers essential topics, including CAST operations. 

Using CAST() for dynamic string formatting 

When concatenating values, CAST() helps ensure that numeric or date values are converted to strings correctly: 

SELECT 'Report Date: ' + CAST(GETDATE() AS VARCHAR(20)) AS FormattedDate; 

Output: 

Report Date: 2024-02-14 10:30:00 

This technique helps generate dynamic report headers or format timestamps in logs. 

CAST isn’t the only option in SQL Server. Sometimes you’ll need CONVERT for formatting, so let’s compare the two side by side. 

CAST vs. CONVERT: Key differences 

CONVERT() is SQL Server-specific and supports format customization (e.g., date styles). Unlike CAST(), CONVERT() allows more control over formatting, particularly for date and numeric conversions. Here’s how CAST() and CONVERT() compare.  

Feature CAST() CONVERT() 
SQL standard ANSI SQL (portable) SQL Server-specific 
Formatting support No Yes (for date & number formatting) 
Portability Works across databases (SQL Server, PostgreSQL, MySQL, etc.) Works only in SQL Server 
Syntax CAST(expression AS data_type) CONVERT(data_type, expression [, style]) 
Use case Best for writing cross-platform SQL queries Best when format customization is needed 
Example CAST(‘2025-02-04’ AS DATE) CONVERT(VARCHAR, GETDATE(), 101) 

For a deeper dive into the CONVERT function and its additional formatting capabilities, check out this guide on the SQL CONVERT() function

Example: CAST() vs. CONVERT() in date formatting 

FunctionQueryOutputKey takeaway 
Using CAST() (no formatting support) SELECT CAST(‘2025-02-14’ AS DATE) AS CastDate; 2025-02-14 CAST() only converts the data type; it does not provide formatting options. 
Using CONVERT() (custom date formatting) SELECT CONVERT(VARCHAR, ‘2025-02-14’, 101) AS FormattedDate; 02/14/2025 CONVERT() allows custom formatting styles (e.g., 101 for MM/DD/YYYY). 

Key notes: 

  • CONVERT() allows custom formatting styles (like MM/DD/YYYY).
  • CAST() only changes the data type without altering how it appears.  

Beyond CAST and CONVERT, SQL Server also provides other conversion functions, each with its own role. Here’s how they fit in. 

CAST vs. other SQL conversion functions 

SQL Server provides multiple additional functions for data conversion. Each serves a distinct purpose, and using the wrong one leads to errors, inefficiency, or inconsistent results. 

PARSE(): Locale-aware string parsing 

PARSE is designed for culture-sensitive conversions, such as regional numbers, currencies, and date formats. 

SELECT PARSE('€123,45' AS MONEY USING 'de-DE') AS EuroValue; 
-- Output: 123.45 
  • Use when input depends on language or culture.
  • Avoid when performance matters; PARSE is slower than CAST or CONVERT. 

TRY_PARSE(): Safe locale parsing 

TRY_PARSE adds fault tolerance to PARSE by returning NULL instead of failing on invalid input. 

SELECT TRY_PARSE('invalid' AS DATE USING 'en-US') AS SafeDate; 
-- Output: NULL 
  • Use when parsing user input that may be invalid.
  • Avoid when you need performance or cross-database portability. 

TRY_CAST() and TRY_CONVERT(): Safe versions of CAST and CONVERT 

When reliability matters, use TRY_CAST or TRY_CONVERT. Both prevent query failures by returning NULL on conversion errors. 

-- TRY_CAST: ANSI-compliant and portable 
SELECT TRY_CAST('abc' AS INT) AS SafeCast; 
-- Output: NULL 
 
-- TRY_CONVERT: SQL Server-specific with style options 
SELECT TRY_CONVERT(DATE, 'not-a-date') AS SafeConvert; 
-- Output: NULL 

Key notes: 

  • TRY_CAST: ANSI standard, portable, safe.
  • TRY_CONVERT: SQL Server–specific, keeps date/number formatting options. 

Choosing the correct function 

Selecting the right function depends on portability, safety, and formatting. The following table shows the best use case for each option. 

Function Best suited for Example
CAST Standard, portable conversions across databases CAST(‘2025-01-01’ AS DATE) 
CONVERT SQL Server–specific formatting of dates or numbers CONVERT(VARCHAR, GETDATE(), 101) 
TRY_CAST Safe, ANSI-compliant conversions that won’t throw errors TRY_CAST(‘abc’ AS INT) 
TRY_CONVERT Safe conversions with SQL Server formatting options TRY_CONVERT(DATE, ‘2025-01-01’) 
PARSE Locale-aware parsing for currencies or regional date formats PARSE(‘€123,45’ AS MONEY USING ‘de-DE’) 
TRY_PARSE Locale-aware parsing with NULL instead of failure TRY_PARSE(‘invalid’ AS DATE USING ‘en-US’) 

The Takeaway 

The SQL CAST function is essential for explicit data type conversion, ensuring data consistency, precision, and compatibility across queries. Unlike implicit conversions, which SQL Server applies automatically, CAST() controls how data is transformed, preventing unexpected errors or performance slowdowns. Here’s a recap of when to use each function: 

  • CAST() for standard conversions that work across different databases,  
  • CONVERT() when you need SQL Server-specific formatting and  
  • TRY_CAST() if there’s a chance of bad data—since it returns NULL instead of crashing your query.  

Furthermore, avoid casting inside WHERE clauses (it kills index performance), use TRY_CAST() to prevent unexpected failures, and stick to DECIMAL over FLOAT for precise financial calculations. Master these, and you’ll write faster, cleaner, and error-free SQL quickly.  

FAQs 

What is a CAST function in SQL? 

CAST() is an SQL function that explicitly converts a value from one data type to another. Unlike CONVERT(), CAST() follows the ANSI SQL standard and does not support format-specific conversions (e.g., date formatting). 

What is the difference between CONVERT and CAST in SQL? 

CAST() is ANSI SQL-compliant and portable across different database systems, while CONVERT() is SQL Server-specific and supports format customization (e.g., date styles and number formatting). 

Why do we use CAST? 

We use CAST() to avoid implicit conversion issues, maintain data consistency, and ensure compatibility across database platforms. CAST() also improves query predictability and prevents unintended precision loss or truncation, which can occur with implicit conversions. Additionally, explicit conversion using CAST() can improve query performance by making SQL Server’s execution plan more efficient. 

How do I CAST to numeric in SQL? 

Use the following SQL CAST syntax to explicitly convert a string to a DECIMAL with precision and scale: 

SELECT CAST('123.45' AS DECIMAL(5,2)) AS NumericValue; 
Dereck Mushingairi
Dereck Mushingairi
I’m a technical content writer who loves turning complex topics—think SQL, connectors, and backend chaos—into content that actually makes sense (and maybe even makes you smile). I write for devs, data folks, and curious minds who want less fluff and more clarity. When I’m not wrangling words, you’ll find me dancing salsa, or hopping between cities.
RELATED ARTICLES

Whitepaper

Social

Topics

Products